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Integrating Out Nuisance Parameters for
Computationally More Efficient Bayesian Estimation –

An Illustration and Tutorial

Martin Hecht, 1 Christian Gische,1 Daniel Vogel, 2 and Steffen Zitzmann3
1Humboldt-Universität zu Berlin

2University of Aberdeen
3University of Kiel

Bayesian estimation has become very popular. However, run time of Bayesian models is
often unsatisfactorily high. In this illustration, we show how to reduce run time by (a)
integrating out nuisance model parameters and by (b) reformulating the model based on
covariances and means. The core concept is to use the sample scatter matrix which is in our
case Wishart distributed with the model-implied covariance matrix as the scale matrix. To
illustrate this approach, we choose the popular multi-level null (intercept-only) model,
provide a step-by-step instruction on how to implement this model in a multi-purpose
Bayesian software, and show how structural equation modeling techniques can be employed
to bypass mathematically challenging derivations. A simulation study showed that run time
is considerably reduced and an empirical example illustrates our approach. Further, we show
how the JAGS sampling progress can be monitored and stopped automatically when con-
vergence and precision criteria are reached.

Keywords: Bayesian analysis, run time optimization, nuisance parameters, multi-level
modeling, structural equation modeling, sampler monitoring

Bayesian statistics is gaining in popularity in many
disciplines and are used for many different purposes,
for instance, to include previous knowledge, to estimate
otherwise intractable models, to model uncertainty (Van
de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, &
Depaoli, 2017), and to stabilize parameter estimates
(e.g., Zitzmann, 2018). Although the advantages of
Bayesian approaches are certainly well appreciated,

a frequently encountered obstacle is the high run time
that might prevent users from using Bayesian estima-
tion. For instance, Hecht, Hardt, Driver, and Voelkle
(2019) report run times of hours to days for rather
small Bayesian longitudinal models. Similar problems
were encountered by Lüdtke, Robitzsch, and Wagner
(2018) who note that “very long chains (more than
2� 106 iterations) […] provided only poor approxima-
tions of the posterior distributions (e.g., small effective
sample size)” (p. 577). Those implementations had in
common that individual random effects (“person para-
meters”) were sampled. These person-specific para-
meters are usually an integral part of the model
formulation. However, research questions oftentimes
focus on group-level statistics such as means and
(between-person) variances. Thus, for these scenarios,
the person parameters are not of substantive interest and
can, therefore, be considered as nuisance parameters
(e.g., Bernardo & Smith, 2000). The lack of interest in
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nuisance parameters opens the door for eliminating
them from the model formulation what might reduce
run time when estimating the model. As “eliminating
nuisance parameters from a model is universally recog-
nized as a major problem of statistics” (Basu, 1977, p.
355), a large number of elimination methods have been
proposed. One approach is to integrate out the nuisance
parameters from the joint posterior and then to refor-
mulate the model based on a model-implied covariance
matrix (Lüdtke et al., 2018).

PURPOSE AND SCOPE

In the present work, we illustrate the method of integrating
out nuisance parameters and covariance-based model refor-
mulation for computationally more efficient Bayesian esti-
mation. In a step-by-step tutorial fashion, we present
detailed instructions and guidance on how to proceed with
this method. For this illustrative purpose, we choose the
Bayesian software JAGS for its flexibility and widespread
use and the multi-level null model because it is easy to
understand and it provides the building block for many
more complex models. This illustration is targeted at all
users of Bayesian software who want to optimize run time
of models in which some of the parameters are not of
interest. To show the run time reduction of the proposed
method, we present results from a simulation study in
which the implementation that includes nuisance para-
meters is compared to two nuisance-free implementations.

The article is organized into the following sections. First,
we present all steps necessary to derive a nuisance-free model
formulation of the multi-level null model including JAGS
code snippets and structural equation modeling (SEM)
formulations. Second, we describe our simulation study
including an approach to monitor convergence criteria when
running JAGS analyses. Third, we present an empirical exam-
ple using data from the MIDUS 2 study (Ryff & Almeida,
2017). Fourth, we conclude with a discussion of the proposed
method. Annotated R code to run the implementations is
provided in the Online Supplemental Material.

STEP-BY-STEP ILLUSTRATION

Step 1: model with nuisance parameters

For this illustration, we choose a simple multi-level
model that is often called “null model” or “intercept-
only model” (e.g., Hox, 2010; Raudenbush & Bryk,
2002) or “hierarchical normal model” (Hoff, 2009). This
model can be used to disentangle within-group variation
from between-group variation. In our presentation, the
groups are persons and the nested observations are
repeated measurements of persons, but of course, the

proposed method can also be identically applied in stan-
dard cross-sectional scenarios (e.g., persons nested in
groups). Let yjp (stacked into person-specific column vec-
tors yj of length P) be the value of person j ¼ 1; . . . ; J at
measurement occasions p ¼ 1; . . . ;P (with J being the
total number of persons and P being the total number
of measurement occasions). The level 1 (within-
person) model equation decomposes the observations
into a person parameter, θj, representing the person-
specific mean level over time, and normally distributed
error terms, εjp: yjp ¼ θj þ εjp; εjp , Nð0; σ2εÞ, with σ2ε
being the within-person variance. On level 2 (between-
person), the person parameters are decomposed into
a total mean, μ, and normally distributed error terms, uj:
θj ¼ μþ uj; uj , Nð0; σ2θÞ, where σ2θ denotes the
between-person variance. The model can equivalently be
represented by the following equations:

Level 1 ðwithin-personÞ : yjp , Nðθj; σ2εÞ ; (1)

Level 2 ðbetween-personÞ : θj , Nðμ; σ2θÞ : (2)

The likelihood function for this model is (adapted from
Hoff, 2009, Chapter 8):

pðy1; . . . ; yJ jμ; σ2θ; σ2ε ; θ1; . . . ; θJÞ

¼
YJ
j¼1

YP
p¼1

pðyjpjθj; σ2εÞ
( ) YJ

j¼1

pðθjjμ; σ2θÞ
( )

; (3)

with p in the bracketed terms denoting the probability
density function of the normal distribution. The assumed
prior distributions expressed by pðμÞ, pðσ2θÞ, and pðσ2εÞ are
a normal distribution for μ and a gamma distribution for
1
σ2θ

and 1
σ2ε

, respectively (see Hoff, 2009, Chapter 8). In

Bayesian models, the posterior distribution is proportional
to the product of the likelihood function and the prior
distributions. Thus, for the joint posterior distribution
(i.e., the distribution of the model parameters given the
data) in the Bayesian multi-level null model, the following
proportionality statement holds:

pðμ; σ2θ; σ2ε ; θ1; . . . ; θJ jy1; . . . ; yJÞ
/ pðy1; . . . ; yJ jμ; σ2θ; σ2ε ; θ1; . . . ; θJ ÞpðμÞpðσ2θÞpðσ2εÞ : ð4Þ

In order to translate this model into JAGS syntax, we need two
components: a “likelihood specification” in accordancewith the
likelihood function and specifications of the prior distributions.
To specify the terms from the likelihood function, we loop over
persons and measurement occasions. Within the loop over
persons and occasions the distributional assumption of observa-
tions yjp given the model parameters θj and σ2ε (contained in the
first bracketed term in the likelihood function, see Equation 3) is
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specified, and within the person loop the distributional assump-
tion of the person parameters θj given μ and σ2θ (contained in
the second bracketed term) is specified:

# loop over persons
for (j in 1:J) {

# loop over measurement occasions
for (p in 1:P) {

# distributional assumption of
# observations (Equation 1)
D [p,j] ~ dnorm(theta[j], prec.eps)

}
# distributional assumption of the
# person parameters (Equation 2)
theta[j] ~ dnorm(mu, prec.theta)

}

where D ¼ ½y1 . . . yj . . . yJ � is a P� J matrix, or, in other
words, D is the sample data matrix in “wide format” with
rows containing the measurement occasions, columns the
persons, and cells the values of persons at measurement
occasions. As an example, we choose rather uninformative
prior distributions for μ, σ2θ, and σ2ε :

# prior distribution for mu
mu ~ dnorm(0, 1/10000)
# prior distribution for 1/sigma2.theta
prec.theta ~ dgamma(0.001, 0.001)
sigma2.theta <- 1/prec.theta
# prior distribution for 1/sigma2.eps
prec.eps ~ dgamma(0.001, 0.001)
sigma2.eps <- 1/prec.eps

We call this version of the Bayesian multi-level null model
the classic implementation.

Step 2: integrating out nuisance parameters

The model formulation in Step 1 contains the person para-
meters θj. For data sets with a large number of persons,
sampling of those parameters may slow down the model
estimation considerably. Therefore, we eliminate those nui-
sance parameters from the original likelihood function
(Equation 3) via integration to arrive at the likelihood
function without the nuisance parameters θj:

pðy1; . . . ; yJ jμ; σ2θ; σ2εÞ ¼

ð
. . .

ð
fðθ1;...;θJ Þ 2 RJg

pðy1; . . . ; yJ jμ; σ2θ; σ2ε ; θ1; . . . ; θJÞdθ1 . . . dθJ :ð5Þ

Solving this integral (see Appendix A for a step-by-step
walk-through and Appendix B for another justification of

the derived results) yields the conditional distribution of
ðy1; :::; yJ Þ given the parameters μ, σ2θ, and σ2ε as

yj , NPðμP;ΣÞ; j ¼ 1; . . . ; J ; independent ; (6)

where μP is a column vector of length P with all elements
being μ and Σ is a symmetric P� P covariance matrix with
all off-diagonal elements being σ2θ and all diagonal ele-
ments being σ2θ þ σ2ε , that is,

Σ ¼ σ2θ1P1
0
P þ σ2εIP

¼
σ2θ � � � σ2θ
..
. ..

.

σ2θ � � � σ2θ

0
B@

1
CAþ

σ2ε 0

. .
.

0 σ2ε

0
B@

1
CA

¼
σ2θ þ σ2ε σ2θ

. .
.

σ2θ σ2θ þ σ2ε

0
B@

1
CA ; (7)

where 1P is a column vector of ones with length P and IP is
the identity matrix of size P. The corresponding precision
matrix, C, is then a symmetric P� P matrix with all off-

diagonal elements being � σ2θ
� and all diagonal elements

being
ðP�1Þσ2θþσ2ε

� , that is,

C ¼ Σ�1 ¼ � σ2θ
�
1P1

0
P þ

Pσ2θ þ σ2ε
�

IP

¼
� σ2θ

� � � � � σ2θ
�

..

. ..
.

� σ2θ
� � � � � σ2θ

�

0
BB@

1
CCAþ

Pσ2θþσ2ε
� 0

. .
.

0
Pσ2θþσ2ε

�

0
BB@

1
CCA ;

¼
ðP�1Þσ2θþσ2ε

� � σ2θ
�

. .
.

� σ2θ
�

ðP�1Þσ2θþσ2ε
�

0
BB@

1
CCA ; (8)

with � ¼ Pσ2θσ
2
ε þ σ4ε : (9)

This formulation could easily be run with JAGS, but sam-
pling J times from a multivariate normal distribution
(Equation 6) with non-zero off-diagonals in the precision
matrix is computationally less efficient than sampling
ðJPþ JÞ times from a univariate normal distribution as in
the classic formulation (Equations 1 and 2). Thus, in the
next step, the model is reformulated in terms of
covariances.

Shortcut via structural equation modeling

Integrating out parameters from the posterior distribu-
tion (resp. the “likelihood” part of it) might become chal-
lenging and may require advanced mathematical skills.
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Fortunately, the SEM framework offers easy to obtain
solutions to derive the model-implied covariance matrix
for a wide variety of models without the nuisance person
parameters. A good starting point is usually to represent the
model of interest as a path diagram using SEM conven-
tions. The multi-level null model can be depicted as a path
diagram as shown in Figure 1 (for an introduction to multi-
level structural equation modeling, see, e.g., Mehta &
Neale, 2005). Based on such a model representation, we
can use tracing rules (Wright, 1934; see also, e.g., Chapter
7 in Kline, 2016) and calculation rules for variances and
covariances (e.g., Steyer & Nagel, 2017, Chapter 6) to
obtain the model-implied covariance structure. For the pre-
sented model, we yield:

VarðyjpÞ ¼ Varð1 � θj þ 1 � εjpÞ
¼ VarðθjÞ þ VarðεjpÞ þ Covðθj; εjpÞ
¼ σ2θ þ σ2e

Covðyjk; yjlÞ¼ Covð1 � θj þ 1 � εjk; 1 � θj þ 1 � εjlÞ
¼ Covðθj; θjÞ þ Covðθj; εjlÞ þ Covðεjk; θjÞ
þ Covðεjk; εjlÞ

¼ σ2θ; for k�l:

Alternatively, we could use an SEM framework to obtain
the model-implied covariance matrix. In the Appendices C
and D, this is shown within the LISREL (Jöreskog, Olsson,
& Wallentin, 2016) and the RAM (McArdle & McDonald,
1984; see also Boker, 2019) framework.

Step 3: covariance-based model reformulation

The basic idea of this step is to find the distribution of the
sample covariance matrix or of a related matrix for the
model of interest. The sample covariance matrix, Q, is
(e.g., Carroll & Green, 1997, Subsection 2.8.3):

Q ¼ 1

J � 1
S ; (10)

where S is the sample scatter matrix (also called mean-
corrected sums of squares and cross product [SSCP] matrix,
Carroll & Green, 1997) given by:

S ¼ ðD� �y10JÞðD� �y10J Þ0 ; (11)

with D as defined in Step 1, 1J being a column vector of
ones with length J , and �y is the sample mean column vector
of length P:

�y ¼ ½�y�1 . . .�y�p . . .�y�P�0 ; (12)

with �y�p ¼ 1
J

PJ
j¼1 yjp. As yj are independently sampled

from a multivariate normal distribution (see Equation 6),
the sample scatter matrix1 has a Wishart distribution (e.g.,
Pham-Gia & Choulakian, 2014):

S , WPðΣ; J � 1Þ : (13)

We can directly translate this to JAGS syntax (note that
the precision matrix C instead of the covariance matrix Σ
needs to be used for dwish()):

# distributional assumption of
# sample scatter matrix (Equation 13)
S ~ dwish(C, J-1)

## construction of
## precision matrix C (Equation 8)
# main diagonal
for (p in 1:P){

C[p,p] <- ((P-1)*sigma2.theta +
sigma2.eps) / ksi

}
# lower/upper triangle
for (k in 2:P) {

for (l in 1:(k-1)) {
C[k,l] <- -sigma2.theta / ksi

FIGURE 1 Graphical SEM representation of the multi-level null model.

1 Instead of the sample scatter matrix, the sample covariance matrix
can be used alternatively which is Wishart distributed with scale matrix
Σ/ðJ � 1Þ and ðJ � 1Þ degrees of freedom (Pham-Gia & Choulakian,
2014).
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C[l,k] <- C[k,l]
}

}
# ksi (Equation 9)
ksi <- P * sigma2.theta * sigma2.eps +

sigma2.eps^2

The prior distributions for σ2θ and σ2ε can be set as in the
classic implementation in Step 1 (see above). The sample
scatter matrix S needs to be computed from the sample data
according to Equation 11 preferably before inputting it into
JAGS. For instance, this can be easily done in R:

# sample mean column vector
# y.bar (Equation 12)
y.bar <- matrix(rowMeans(D), P, 1)
# column vector of ones
ones.vec <- matrix(1, J, 1)
# sample scatter matrix (Equation 11)
S <- (D - y.bar %*% t(ones.vec)) %*%

t((D - y.bar %*% t(ones.vec)))

We call this version of the Bayesian multi-level null
model the nuisance-free covariance-based implementation.
This formulation contains only covariance-based terms
(i.e., both error variances, σ2θ and σ2ε ), but no mean-
structure-based terms (i.e., the mean μ dropped out). If
this mean is of interest, we can re-add it to the model.

Step 4 (optional): re-adding the mean structure

The conditional distribution of the sample means given the
parameters μ, σ2θ, and σ2ε is (adapted from Flury, 1997,
Chapter 4):

�y , NPðμP;
1

J
ΣÞ : (14)

This translates to JAGS code (note that dmnorm() needs
a precision matrix instead of a covariance matrix as input):

# precision matrix of means
Cm <- J * C
# distributional assumption of
# sample means (Equation 14)
y.bar ~ dmnorm(mu.vec, Cm)
# construction of mu vector
for (p in 1:P){

mu.vec[p] <- mu
}

The prior distribution for µ can be set as in the classic
implementation in Step 1 (see above). We call this version
of the Bayesian multi-level null model the nuisance-free
covariance- and mean-based implementation.

Shortcut via structural equation modeling

Similar to the covariance structure, we can derive the
model-implied means for the response variables yjp via
SEM. Based on Figure 1, we apply tracing rules and calcu-
lation rules for expectations (e.g., Steyer & Nagel, 2017,
Chapter 6) and obtain:

EðyjpÞ ¼ Eð1 � θj þ 1 � εjpÞ ¼ Eðμ � 1Þ þ EðεjpÞ ¼ μ :

Alternatively, we could use an SEM framework like
LISREL or RAM (see Appendices C and D).

SIMULATION STUDY

One objective of this work is to show that the proposed
approach leads to computational more efficient Bayesian
model estimation. To this end, we conducted a simulation
study in which we compared the run time between the
described implementations. As run time gains are less
expedient if they are at the expense of the parameter esti-
mation quality, we include parameter recovery and preci-
sion statistics in our comparison.

Data generation

The data generating model was the multi-level null model
described in Equations 1 and 2 with μ ¼ 0, σ2θ ¼ 1, σ2ε ¼ 1,
J ¼ 5;000 persons (level 2 units), and P ¼ 20 measurement
occasions (level 1 units):

yjp , Nðθj; 1Þ ; (15)

θj , Nð0; 1Þ : (16)

The number of generated data sets (replications) was
Nrepl ¼ 1;000.

Analysis

We ran the three Bayesian implementations of the multi-
level null model described above: the classic implementa-
tion, the nuisance-free covariance-based implementation,
and the nuisance-free covariance- and mean-based imple-
mentation. For all three implementations, the same Nrepl ¼
1;000 generated data sets (replications) were used. All
models were estimated with JAGS 4.3.0 (Plummer,
2017) interfaced by the R package rjags (Plummer,
2016) running on R version 3.5.0 (R Core Team, 2018).
Starting values for the model parameters were random
draws from the priors, that is, a normal distribution with
a variance of 10,000 for μ, and an inverse gamma distri-
bution for σ2θ and σ2ε with shape and rate parameter being
0.001. We used the following procedure to determine
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convergence and ensure sufficient precision of Bayesian
estimates (see Figure 2 for a flow chart of this procedure):
50 iterations on one chain were run; from those 50 itera-
tions, the first 25% were discarded as burn-in; on those
remaining 38 iterations, the potential scale reduction fac-
tor (PSR) and the effective sample size (ESS) were com-
puted for all model parameters using the R package
shinystan (Gabry, 2018). If the stopping criteria were
not met, another 50 iterations were added and the resulting
100 iterations were processed again with the same proce-
dure. This approach of adding iterations was repeated until
the stopping criteria were reached. As stopping criteria we
used PSR � 1:001 and ESS � 400 for all parameters in
order to ensure that the Bayesian estimates are approxi-
mated well by summary statistics for the MCMC chain
(see Zitzmann & Hecht, 2019). After that, the mode of the
converged chain served as the parameter estimate. We
used the mode because it can be considered a natural
extension of the ML estimator (see DeCarlo, Kim, &
Johnson, 2011) and it might outperform the mean and
the median (e.g., Zitzmann, Lüdtke, & Robitzsch, 2015).
As parameter recovery and precision statistics, bias, root
mean squared error (RMSE), and coverage rate were
computed. The coverage rate was calculated as the frac-
tion of the number of replications in which the 95%
credible interval covered the true parameter value and

the number of replications (Nrepl). All analyses were run
on one Intel i7-5820K (3.30 GHz) CPU of a Windows 10
64-bit desktop computer.

Results

Table 1 shows the results and the run time for all three imple-
mentations. All recovery and precision statistics (bias, RMSE,
coverage rate) are quite similar in all implementations. Bias is
very low (<:001) and coverage rates are very good (between
:934 and :951) for all parameters. Thus, all implementations are
equally well suited for the estimation of the multi-level null
model.MeanPSR is comparable across implementations.Mean
ESS is roughly equal for both implementations that contain the
same number of parameters (i.e., the classic and the nuisance-
free covariance- and mean-based implementation). In the nui-
sance-free covariance-based implementation this statistic is
somewhat lower. The number of iterations until the stopping
criteria were met is lowest for this implementation as well. This
is likely because the parameter μ is not included and therefore
the conjunct stopping criteria are more easily met.

With respect to run time, the implementations differ consid-
erably. Whereas the estimation with the classic implementation
needs on average 86:5s, the nuisance-free covariance-based
implementation is roughly 47 times faster (M ¼ 1:8s) and the

FIGURE 2 Procedure for monitoring criteria (such as convergence and parameter precision) in JAGS until their stopping thresholds are met. RNG =
Random number generator.
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nuisance-free covariance- and mean-based implementation is
around 35 times faster (M ¼ 2:4s). Thus, integrating out nui-
sance parameters and reformulating the model leads to
a massive reduction in run time.

EMPIRICAL EXAMPLE

We use publicly available data from the ‘Midlife in the United
States (MIDUS 2): Daily Stress Project, 2004-2009’ (Ryff &
Almeida, 2017), a longitudinal study of health and well-being,
to illustrate our Bayesian nuisance-free covariance/mean-based
implementation of the multi-level null model. For reference
purposes, we as well report results obtained from frequentist
estimation with the R package lme4 (Bates, Mächler, Bolker,
& Walker, 2019). The MIDUS 2 data set contains data from
2;022 persons assessed at 8 measurement occasions. For the
purpose of providing an example, we pick the variable “symp-
tom severity” (B2DSYMAV, 1 = very mild, 10 = very severe).
There are no missing values; thus, all persons have data for all
measurement occasions (giving a total of 8 � 2;022 ¼ 16;176
observations).

The analyses were run on the same machine and with the
same specifications and run parameters as described in the
simulation study. Results are shown in Table 2. The
Bayesian results only marginally differ from the frequentist
results. However, the lme4 estimation was somewhat faster
than our Bayesian JAGS estimation (0.16 s vs. 0.69 s). The
estimated mean symptom severity is μ ¼ 2:61 and persons
differ in symptom severity with a variance of σ2θ ¼ 1:65,
whereas the within-person variance is σ2ε ¼ 1:94. Inference
for these parameters can be drawn by investigating the
Bayesian credibility intervals or the frequentist confidence
intervals. For all model parameters, the respective intervals
do not include zero, indicating significance.

DISCUSSION

Run time of Bayesian models might be unsatisfactorily
high. In this illustration, we showed how to integrate out
model parameters that are not of substantive interest and
therefore considered as a nuisance. We reformulated the
nuisance-free model based on covariances and means and

TABLE 1.
Parameter Recovery Parameter, Precision and Run Time for Three Bayesian Implementations of the Multi-level Null Model

nuisance-free

classic cov.-based cov./mean-based

Statistic Parameter Value Value Value

Bias μ −0.000003 — −0.000287
σ2θ −0.000317 0.000076 −0.000033

σ2ε −0.000250 −0.000260 −0.000210

RMSE μ 0.0155 — 0.0146
σ2θ 0.0218 0.0209 0.0212

σ2ε 0.0051 0.0050 0.0049

Coverage rate 95% μ .951 — .945
σ2θ .951 .951 .948

σ2ε .934 .934 .934

Run time (seconds) M 86.5 1.8 2.4
min 49.3 1.3 1.5
max 1962.3 4.1 10.5

PSR M 0.9992 0.9989 0.9990
min 0.9976 0.9976 0.9976
max 1.0010 1.0010 1.0010

ESS M 561 483 526
min 400 400 400
max 6794 1060 1746

Number of iterations M 897 683 738
min 550 550 550
max 20250 1550 2600

Note. cov. = covariance, Nrepl ¼ 1;000, PSR � 1:001 and ESS � 400 for all parameters, J ¼ 5;000 level 2 units (persons), P ¼ 20 level 1 units
(measurement occasions), one chain ran on one Intel i7-5820K (3.30 GHz) CPU of a Windows 10 64-bit desktop computer.
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utilized the property of the sample scatter matrix being
Wishart distributed with the model-implied covariance
matrix as the scale matrix. This led to a considerable reduc-
tion in run time compared to a classic implementation that
included the nuisance parameters.

Several issues and limitations of our work need to be taken
into consideration: (1) To keep it simple for the purpose of
illustration, we used a basic model and a balanced design.
Future research should extend this approach to more complex
models and designs. (2) The described mathematical deriva-
tions might become challenging in more complex models and
might require advanced mathematical skills. However, espe-
cially for popular, frequently used models we think that run
time reduction is worthwhile because computational time is
always a limited resource associated with costs. And with the
demonstrated shortcut via structural equation modeling the
mathematically challenging derivations can be bypassed for
a large variety of models. (3) Frequentist estimation might be
faster than Bayesian estimation (as shown in our empirical
example). However, Bayesian estimation provides several
advantages (e.g., inclusion of previous knowledge, estimation
of otherwise intractable models, stabilization of parameter
estimates) that users might want to profit from. (4) Our simu-
lation study consisted of only one simulation design factor,
namely, the implementations. All other factors (e.g., the num-
ber of persons and the number of measurement occasions) that
might have an effect on the dependent variable (run time)
were kept constant. Thus, our findings cannot be generalized
beyond the investigated condition. Nevertheless, we believe
that our main argument is not limited to the condition and the
model investigated. Although run time reduction might vary
in extent, we believe it should generalize to a large number of
conditions and models. We speculate that with an increasing
ratio of level 2 to level 1 units the run time reduction gains of
the presented nuisance-free implementations increase,
because each additional level 2 unit implies additionally sam-
pling ðPþ 1Þ times from a normal distribution in the classic
implementation, whereas the number of sampling instances in
the nuisance-free implementations does not depend on the
number of level 2 units (J). Thus, the presented nuisance-
free model is especially advantageous for a high number of

level 2 units and a low number of level 1 units, a situation
oftentimes encountered in, for instance, longitudinal large-
scale assessments. (5) In our illustration, we deemed the
person parameters θj, which are the person-specific means
across time in the multi-level null model, as not relevant and
thus dispensable. Only parameters that are not of interest from
a substantive point of view are suitable for being integrated
out. However, even if person parameters are of interest, the
proposed nuisance-free implementations can still be used and
person parameters might then be estimated in a further step
using individual score methods (see, e.g., Hardt, Hecht, Oud,
&Voelkle, 2019; Hardt, Hecht, &Voelkle, in press). (6) JAGS
was used because it is a popular and stable multi-purpose
Bayesian software. The proposed approach should easily
work with other Bayesian software as well. However, the
run time gain depends on the efficiency and speed of the
implemented sampler and thus might differ.

In conclusion, we have shown that the proposed approach
of integrating out nuisance parameters and model reformula-
tion is a worthwhile strategy for run time reduction in
Bayesian estimation and hope that our tutorial will help
researchers to speed up their Bayesian models in the future.
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APPENDIX A. SOLVING THE INTEGRAL TO
DERIVE THE NUISANCE-FREE SOLUTION

We treat the hyperparameters μ, σ2ε , and σ2θ as fixed. We have Equation 5:

pðy1; . . . ; yJ jμ; σ2θ; σ2εÞ
¼

ð
. . .

ð
fðθ1;...;θJ Þ2RJg

pðy1; . . . ; yJ jμ; σ2θ; σ2ε ; θ1; . . . ; θJÞdθ1 . . . dθJ

¼
YJ
j¼1

ð
θj
pðθjjμ; σ2θÞ

YP
p¼1

pðyjpjθj; σ2εÞdθj
" #

:

Each integral within the product on the right-hand side is of the same
form, and we drop the dependence on the index j. Thus

I ¼
ð
θ
pðθjμ; σ2θÞ

YP
p¼1

pðypjθ; σ2εÞdθ

¼
ð
θ

1ffiffiffiffiffi
2π

p
� �Pþ1 1

σθσPε
exp � 1

2

ðθ� μÞ2
σ2θ

þ
XP
p¼1

ðyp � θÞ2
σε

" #( )
dθ

¼
ð
θ

1ffiffiffiffiffi
2π

p
� �Pþ1 1

σθσPε
exp � 1

2

ðθ� η2ðP�y=σ2ε þ μ=σ2θÞÞ2
η2

" #(

� 1

2

XP
p¼1

y2p
σ2ε

þ μ2

σ2θ
� η2

P�y
σ2ε

þ μ
σ2θ

 !2
2
4

3
5
9=
;dθ ;

with �y ¼ 1

P

XP
p¼1

yp and η
2 ¼ 1

P=σ2ε þ 1=σ2θ
¼ σ2εσ

2
θ

Pσ2θ þ σ2ε
:

Since the normal density integrates to 1, we have that

ð
θ
exp � 1

2

ðθ� η2ðP�y=σ2ε þ μ=σ2θÞÞ2
η2

" #( )
dθ ¼

ffiffiffiffiffi
2π

p
η ;

and hence

I ¼ 1ffiffiffiffiffi
2π

p
� �P η

σθσPε
exp � 1

2

XP
p¼1

y2p
σ2ε

þ μ2

σ2θ
� η2

P�y
σ2ε

þ μ
σ2θ

 !2
2
4

3
5

8<
:

9=
;:

This can be written in the form of the density of a P-variate normal
distribution:

I ¼ 1ffiffiffiffiffi
2π

p
� �P ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðCÞ
p

exp � 1

2
ðy� μÞ0Cðy� μÞ

� �
;

where y ¼ ðy1; . . . ; yPÞ
0
;μ ¼ ðμ; . . . ; μÞ0 ; and

C ¼ c1IP þ c21P1
0
P ;

with c1 ¼ 1=σ2ε and

c2 ¼ � η2

σ4ε
¼ � σ2θ

Pσ2θσ
2
ε þ σ4ε

:

The matrix C has two distinct eigenvalues: λ1 ¼ c1 þ Pc2 with multi-
plicity 1, corresponding to the eigenvector 1P, and λ2 ¼ c1 with multi-
plicity P� 1, the corresponding eigenspace being orthogonal to 1P. Hence,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ Pc2ÞcP�1

1

q
¼ η

σθσ
P
ε
:

This matrix C is the same that is given in Equation 8. Let Σ denote the
inverse of C. It remains to show that Σ has the form given in Equation 7.
Towards this end, note that C�1 has eigenvalues δ1 ¼ λ�1

1 ¼ σ2ε þ Pσ2θ
(with multiplicity 1) and δ2 ¼ λ�1

2 ¼ σ2ε (with multiplicity P� 1). Further,
using the decomposition

A ¼
XP
p¼1

apνpνp
0

for any real symmetric square matrix A where a1; . . . ; aP are the (generally
non-distinct) eigenvalues and ν1; . . . ; νP form an orthonormal basis of corre-
sponding eigenvectors, we obtain that Σ has the same structure as C, that is,

Σ ¼ s1IP þ s21P1
0
P ;

and by inverting the relationship between ðc1; c2Þ and ðλ1; λ2Þ, we arrive at
s1 ¼ σ2ε and s2 ¼ σ2θ . This completes the proof.

APPENDIX B. ANOTHER JUSTIFICATION OF THE
DERIVED RESPONSE DISTRIBUTION

Here we present a way of deriving the results presented in Equations 5–7.
All distributions in the following are conditional on μ, σ2θ , and σ2ε , that is,
these parameters are treated as non-random. Then, we have from Equation 2

θj , Nðμ; σ2θÞ; j ¼ 1; . . . ; J :

Further, define

zjp , Nð0; σ2εÞ; j ¼ 1; . . . ; J ; p ¼ 1; . . . ;P;

with all variables being independent. Then, for each
j ¼ 1; . . . ; J,

zj1
..
.

zjP
θj

0
BBB@

1
CCCA , NPþ1

0
..
.

0
μ

0
BB@

1
CCA;

σ2ε 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
.

σ2ε 0
0 � � � 0 σ2θ

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA;

and hence

492 HECHT ET AL.



y j ¼
yj1
..
.

yjP

0
B@

1
CA ¼d

1 0 � � � 0 1

0 . .
. . .

. ..
. ..

.

..

. . .
.

1 0 1
0 � � � 0 1 1

0
BBB@

1
CCCA

zj1
..
.

zjP
θj

0
BBB@

1
CCCA;

where ¼d denotes equality in distribution. Hence, yj has a P-variate
normal distribution with mean vector μP and covariance matrix

Σ ¼

1 0 � � � 0 1

0 . .
. . .

. ..
. ..

.

..

. . .
.

1 0 1
0 � � � 0 1 1

0
BBB@

1
CCCA

σ2ε 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
.

σ2ε 0
0 � � � 0 σ2θ

0
BBBB@

1
CCCCA

1 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
.

1 0
0 � � � 0 1
1 � � � 1 1

0
BBBBB@

1
CCCCCA;

which can be seen to be identical to the form given in Equation 7.

APPENDIX C. LISREL MODEL FORMULATION

Here we present a way to obtain the model-implied covariance matrix
and the model-implied means using the LISREL structural equation
modeling framework (Jöreskog et al., 2016). The multi-level null
model depicted in Figure 1 translates into the following LISREL
matrices:

Φ ¼ σ2θ
� �

; Θδ ¼
σ2ε 0

. .
.

0 σ2ε

0
B@

1
CA ; Λx ¼

1
..
.

1

0
@

1
A ; and

κ ¼ μð Þ :

The model-implied covariance matrix can then be calculated as:

Σ ¼ ΛxΦΛ0
x þΘδ

¼
1

..

.

1

0
B@

1
CA σ2θ
� �

1 . . . 1ð Þ þ
σ2ε 0

. .
.

0 σ2ε

0
BB@

1
CCA

¼
σ2θ þ σ2ε σ2θ

. .
.

σ2θ σ2θ þ σ2ε

0
B@

1
CA ;

which is identical to the matrix given in Equation 7.
The model-implied mean vector can be calculated as:

μP ¼ Λxκ ¼
1
..
.

1

0
@

1
A μð Þ ¼

μ

..

.

μ

0
B@

1
CA;

which is identical to the vector used in Equation 6.

APPENDIX D. RAM MODEL FORMULATION

Here we present a way to obtain the model-implied covariance matrix and the
model-implied means using the RAM structural equation modeling frame-
work (McArdle & McDonald, 1984; see also Boker, 2019). The multi-level
null model depicted in Figure 1 translates into the following RAM matrices:

S ¼
σ2θ 0

σ2ε
. .
.

0 σ2ε

0
BBB@

1
CCCA ; A ¼

0 0 0 0
1 0 0 0
..
. ..

. ..
. ..

.

1 0 0 0

0
BB@

1
CCA ;

F ¼
0 1 0
..
. . .

. . .
.

0 . . . 0 1

0
@

1
A ; and M ¼

μ
0
..
.

0

0
BB@

1
CCA :

The model-implied covariance matrix can then be calculated as:

Σ ¼ FðIPþ1 � AÞ�1SðIPþ1 � AÞ�10F
0

¼
σ2θ þ σ2ε σ2θ

. .
.

σ2θ σ2θ þ σ2ε

0
B@

1
CA ;

which is identical to the matrix given in Equation 7.
The model-implied mean vector can be calculated as:

μP ¼ FðIPþ1 � AÞ�1M ¼
μ

..

.

μ

0
B@

1
CA;

which is identical to the vector used in Equation 6.
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